What is the optimal radiation dose for non-operable esophageal cancer? Dissecting the evidence in a meta-analysis
نویسندگان
چکیده
The standard radiation dose 50.4 Gy with concurrent chemotherapy for localized inoperable esophageal cancer as supported by INT-0123 trail is now being challenged since a radiation dose above 50 Gy has been successfully administered with an observable dose-response relationship and insignificant untoward effects. Therefore, to ascertain the treatment benefits of different radiation doses, we performed a meta-analysis with 18 relative publications. According to our findings, a dose between 50 and 70 Gy appears optimal and patients who received ≥ 60 Gy radiation had a significantly better prognosis (pooled HR = 0.78, P = 0.004) as compared with < 60 Gy, especially in Asian countries (pooled HR = 0.75, P = 0.003). However, contradictory results of treatment benefit for ≥ 60 Gy were observed in two studies from Western countries, and the pooled treatment benefit of ≥ 60 Gy radiation was inconclusive (pooled HR = 0.86, P = 0.64). There was a marginal benefit in locoregional control in those treated with high dose (> 50.4/51 Gy) radiation when compared with those treated with low dose (≤ 50.4/51 Gy) radiation (pooled OR = 0.71, P = 0.06). Patients that received ≥ 60 Gy radiation had better locoregional control (OR = 0.29, P = 0.001), and for distant metastasis control, neither the > 50.4 Gy nor the ≥ 60 Gy treated group had any treatment benefit as compared to the groups that received ≤ 50.4 Gy and < 60 Gy group respectively. Taken together, a dose range of 50 to 70 Gy radiation with CCRT is recommended for non-operable EC patients. A dose of ≥ 60 Gy appears to be better in improving overall survival and locoregional control, especially in Asian countries, while the benefit of ≥ 60 Gy radiation in Western countries still remains controversial.
منابع مشابه
A study on the esophageal cancer radiotherapy effects on the patient’s lung health
Introduction: Radiotherapy with or without surgery plays an important role in the treatment of patients with esophageal cancer. In the treatment planning of esophageal cancer, usually normal lung volume was observed in the treatment fields and probably received high radiation dose. The incidence of radiation pneumonitis (RP) after radiotherapy (RT) for sensitive organ of lu...
متن کاملComparing of different normal tissue complication probability models for plan evaluation of radical radiotherapy for esophageal cancer
Introduction: Chemoradiation is a well-established protocol for management of localized esophageal cancer. However, some early and late toxicities are associated with this therapy. Plan evaluation in term of normal tissue complication probability (NTCP) may help clinicians to tailor this therapy more individually. Given the variety of present radiobiological models, the choice...
متن کاملEvaluation of Lung Dose in Esophageal Cancer Radiotherapy Using Monte Carlo Simulation
Background and purpose: Radiation therapy make an important contribution in the control and treatment of cancers. Lungs are the main organs at risk in esophageal cancer radiotherapy. Difference between the dose distribution due to the treatment planning system (TPS) and the patient's body dose is dependent on the calculation of the treatment planning system algorithm, which is more pronounced i...
متن کاملApplicator Attenuation Effect on Dose Calculations of Esophageal High-Dose Rate Brachytherapy Using EDR2 Film
Introduction Interaluminal brachytherapy is one of the important methods of esophageal cancer treatment. The effect of applicator attenuation is not considered in dose calculation method released by AAPM-TG43. In this study, the effect of High-Dose Rate (HDR) brachytherapy esophageal applicator on dose distribution was surveyed in HDR brachytherapy. Materials and Methods A cylindrical PMMA phan...
متن کاملComparison between field-in-field technique and the use of conventional wedges for treatment planning of esophageal cancer
Introduction: This study was conducted to evaluate and quantify the treatment planning performance of MLC-optimized field-in-field planning technique (FIF), also named forward IMRT, versus wedge-based three field (W3F) technique in terms of dosimetric and radiobiological parameters for esophageal carcinoma. Material and Methods: Twenty patients with esophag...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2017